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A technique based on the composition of elementary phase fluxes~; is proposed for investigating parametric resonance in systems 
with "large" perturbations, described by second-order linear differential equations with periodic piecewise-constant coefficients. 
A monodromy matrix is given and a parametric resonance criterion is indicated, which takes into account the possibility of multiple 
multipliers and the action of dissipative forces. When there is a two-stage dependence of the coefficients on time during one 
period, regions of parametric resonance are obtained for different types of linear mechanical systems with one degree of freedom. 
© 1999 Elsevier Science Ltd. All rights reserved. 

The technique of investigating parametric resonance has traditionally been based on a combination of 
Floquet's theory and small-parameter methods and Fourier analysis [1-4]. Another approach to this 
problem consists of using the conditions of absolute stability and variational methods as, for example, 
in [5]. To illustrate the results of the small-parameter method, an analogue of Hill's equation with 
piecewise-constant coefficients of the quasi-rectangular sine type was considered in [3], and the Meissner 
equation (a two-stage piecewise-constant analogue of the Mathieu equation) was considered in [1]. 
Meissner's equation was investigated in more detail in [2, 6]. This paper supplements and, in some cases, 
refines results obtained previously. 

1. T H E  P A R A M E T R I C  R E S O N A N C E  C R I T E R I O N  

Suppose the motion of a mechanical system with one degree of freedom is described by a second- 
order ordinary linear differential equation, the coefficients of which are known periodic functions of 
time (or other independent variable) with the same period z 

£+a(t)k+b(t)x =0 (1.1) 

We will denote by 

A=]alt al2~ 
la21 az~[I 

the monodromy matrix [4, 7], which gives the transformation of the solutions in terms of the period x. 
It follows from Floquet's theorem [4] that the characteristic monodroy equation, which defines the 
multipliers, has the form 

~2_B~t+D=0,  D = e x p -  a(t)dt 

where B = a11 + a22 is the trace of the monodromy matrix. 
By Floquet's theory the following criterion holds.$ 
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Theorem 1. Suppose the motion of the system is described by a second-order homogeneous linear 
differential equation with periodic coefficients, having the same period. Parametric resonance occurs 
in it if and only if some of the following cases arise 

I . D > I ,  

2. D= 1:181>2 or IB1=2 and a~z+a~l ~=0; 
3 . 0 < D < l :  IBI>D+I ,  

where air are the components of the monodromy matrix. 
This criterion differs from the one derived previously in [5] in that the necessary property of absolute 

stability of motion is not required. 

2. CALCULATION OF THE M O N O D R O M Y  MATRIX 

In order to be able to use Theorem 1, we need to obtain the components of the monodromy matrix. 
Suppose the basis functions xl(t) and x2(t) satisfy the initialconditions [7] 

xl(O)=l, :i:l(O)=O, x2(O)=O, .~2(0) =1 (2.1) 

Then 

all=Xt(X), aZZ=k2(X), a21=~i(X), al2=x2(X) 

We will henceforth investigate Eq. (1.1) with piecewise-constant coefficients 

a I, 0 < t; fb,, o < t; 

a(t)=]a2,.., t ~ , t < t ~  , b(t)=li!,., t~<~t<t~ 

(a,,  t'n_l~t<t'n='~ t 'n_ l~ t<t '=~ 

where ak, bk(t'k = t~-i + t,, tk > 0; k = 1 , . . . ,  n) are constant parameters and t' 0 = 0. 
Note that the intervals in which the values of the functions a(t) and b(t) are constant are identical. 

Consequently, in each such interval the differential equation defines the phase flux with matrix G~, which 
transfers the phase point from the initial position at the instant of time t~_l to the final position at the 
instant of time t~. 

We will use the rule of continuous extension of the solutions at instants when the coefficients jump. 
Suppose A(t;) is the matricant [4], corresponding to the instant of time t; = t~-i + tj and A(t~_D is the 
matricant of  the same solutions corresponding to the instant of time t~_ 1. Then 

A(t~) = GjA(t~_ I) 

The monodromy matrix is the value of the matricant A(t) at the instant of time t~, = x, and hence it 
is expressed by the formula 

a = A(t~) = GIG 2 ...G n 

We will first consider the case when bk(t ) = c02(t) > 0 (k = 1 . . . . .  n), where all the coefficients of 
the equation take real values. This type of differential equation is conventionally called an oscillator 
equation. In particular, when a(t) =-- 0 we have Hill's equation with piecewise-constant coefficients, and 
for this the phase-flux matrix is expressed in terms of the time interval tj by the formula 

Gj = I~cos/((Ojtj ) 

l-m j sin((o jt j ) 

l--L sin((ojtj ~ 

C~OJS((OJtJ ) / 

When aj * 0 and a~ < 4(o~ (j = 1 . . . . .  n) we have 
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cj = "-~,-'-i-') ~' aj = 4,o~ -~j 

/ ~OS( ['~ j t  j ) + ~ sin(~jt:) 1 . I! 2aj ' E/s'n(aJ t )  

U/ .--7~-~J + n j  ] s i n ( n y t / ) 4 U j  ) , _aJ2f~j sin(njtj)+cos(f~jtj~ 

2 4O) 2, we obtain If it turns out that aj = 

il+ajtj/2 tj I 
G;=] -a~ t j l 4  l - a j t j l 2  

Finally, if a~ > 4¢o~ the phase flux matrix takes the form 

G; exp(cQtj) + G]" exp(ct~tj) 
a j  = '~J+ -'~; 

± - a j + 4 a y - 4 0 ~  ~ ] :g-ot~. -I-l~ 

~,j= . a ~ = p . ; . ;  ±"I n 

For the oscillator equation the corresponding monodromy matrix is obtained in the form of the product 
of these elementary matrices, which describe the conversion of the phase coordinates in separate intervals 
in which the coefficients a and b are constant. 

We consider the generalized oscillator equation with coefficient a(t) = O, bk = - ~  (k = 1 . . . . .  n), 
where the constants ¢Ok(t) can take either real or pure imaginary non-zero values. For this equation the 
phase-flux matrix in the jth interval has the form 

Gj = ]cLh(~dj ) 
I1% sh(~jtj) 

If it turns out that the quantity ¢0j = i¢o/is pure imaginary, this matrix is identical with the phase-flux 
matrix of a harmonic oscillator. 

Theorem 2. Suppose the solutions xl(t) and x2(t) of the generalized oscillator equation with 
coefficients a(t) m O, bk = " -~  (k = 1 . . . . .  n) satisfy the initial conditions (2.1). Then the values of 
these solutions and their derivatives at the instant of time t', are expressed by the formulae 

l _~_~_ 
x l ( t ~ ) = ' ~  PTchSv, Xl(t~)-2._ , ~ T"PvshSv 

, 1 ~ .  

,.°. ) . 

P~ = r=| Yr÷tgr+! SV = ,=! ~ Y~'mrt" 

where a set 7 = { Y 1 ,  • • • , Y n }  consists of the company "fr, which take the values 71 = 1, Yr = ---1 (r = 2, 
. . . .  n), while the summation is carried out over all these sets. 

For Hill's equation with piecewise-constant coefficient a(t) -- O, bk = -¢o2k (k = 1 . . . .  , n) we 
can assume Ok = iCOk. Then the components of the monodromy matrix are given by the following 
corollary. 
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Corollary 1. Suppose the solutions xl(t)  and x2(t) of Hill's equation with piecewise-constant functions 
o)(t) satisfy initial conditions (2.1) when t = 0. Then the assertion of Theorem 2 holds when o)k is replaced 
by ok and the hyperbolic functions are replaced by corresponding trigonometric functions with a change 
in the sign of the expression for xl(t ' ,) obtained in this way. 

3. T W O - S T A G E  P I E C E W I S E - C O N S T A N T  A C T I O N  

Using the formulae of the previous section we will investigate the resonance regions for several systems 
described by different types of differential equations. 

System 1. Suppose the motion is described by Hill's equation with piecewise-constant periodic function 
b = o)2(t), where 

to(t) = ~tot' 0 ~< t < tj (3.1) 
[o)2, tl < ~ t < 6 = t l + t 2 = x  

We will use Theorem I and take into account the fact that D = 1. We will first investigate the resonance 
condition I all + a22 1 > 2. We will put Xl = o)ltl, Xz = o)2t2. In accordance with Corollary 1, the condition 
considered takes the form 

I × . ~ +  - ×_r I_ I> 2 (3.2) 

where ×± = (COl --- o)2)2/(2o)1o)2), rl ± = cos(x1 - Xz). Obviously for any positive values of 001, o)2 we have 
×+ /> 2, × 1> 0. The equalities ×+ = 2, ×_ = 0 are obtained if and only if 001 = o)2 The parametric- 
resonance condition can be represented in the form of the set of inequalities 

2 × 2 x 
1 1 + > - - +  ' r L  or q + < - - - +  --11_ 

;g+ X+ ~;+ ;~+ 

In order to obtain the resonance region, we must cut a strip from the square I rl_ I~ < 1, 1 11+ I ~< 1 between 
the straight lines 

2 x 2 x 
1 1 + = - - +  --11_, 1 1 + = - - - +  '11_ 

;g+ ~+ ~+ ;g+ 

Note that x_/x+ < 1, so that the slope of these lines does not exceed rt/4. The first of these will then 
pass through the point (1, 1) while the second will pass through the point (-1, -1). 

In Fig. 1 the regions corresponding to parametric resonance are shown hatched. They exist for any 
COl and Oz that are not equal to one another and only disappear when o)1 = o)z. 

f 

- !  0 

-7 

! 

v ~ 

Fig. 1, 
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According to Theorem 1 there is no resonance in the case of multiple multipliers if and only if the 
following equalities are simultaneously satisfied 

a21 = a 1 2 = 0  

Taking the notation employed into account we have a homogeneous system of linear equations in the un- 
knowns sin(x1 + x2), sin(x1 - Xz). If (01 ~ to2, the determinant of the system is non-zero, and its solution is 

sin(x I +x2)=0,  sin(x l - x 2 ) = 0  

which corresponds to the corners of the square in Fig. 1. Hence, parametric resonance will also occur 
in the case of multiple multipliers, and the hatched regions in Fig. 1 include the boundary, with the 
exception of the points (1, 1) and (-1, -1). 

System 2. Suppose the motion in a small neighbourhood of an unstable equilibrium is described by 
an equation with coefficients a -= 0, b = -to2(t), where the function t0(t) has the form (3.1). We will 
assume that D = 1. We will investigate the resonance condition I a l l +  a22 I > 2. In accordance with 
Theorem 2 the condition in question takes the form (3.2), where the coefficients ×_+ are the same as 
in system 1 and rl_ = ch (xl --- x2). In the plane of the variables (rl+, rl_) the region of permissible values 
is the corner defined by the inequalities rl_ I> 1; rl+ t> rl_, since Xl ~ 0 and x2 ~ 0. As might have been 
expected, this comer belongs to the region of parametric resonance, with the exception of the degeneracy 
point (1.1), for which xl = ¢2 = 0. 

System 3. Suppose a -= 0, b = -(0e(t), where ~ can take both real and pure imaginary values, for example 

[ to~, O <~ t < tl 
~(t)=Lito 2, t t <~t<t~ = t l + t  2 =x  

By Theorem 2 the condition I all + a22 I > 2 can be represented in the form 

'-f"-°,/ TI>I+x ~ or rl<-l+x~, x=2~,to2 ~" 

where "q = ch Xl cos x2, ~ = sh Xl sin x2. In the (~, rl) plane, in the region between the parallel straight 
lines ~q = 1 + ×~ and 11 = -1 + ×~, which always exist for finite values of ×, parametric resonance does 
not occur. The curves corresponding to the change in the parameter x2 for a fixed value of the parameter 
Xl, are closed ellipses. Consequently, for any (01 and (02 we can obtain a combination of the parameters 
xl and x2 for which the motion in the neighbourhood of an unstable position of equilibrium will be 
stabilized. 

System 4. We will investigate how a small dissipation, added to Hill's equation, can change the reson- 
ance region. The corresponding system is described by differential equation (1.1), in which b = (02, to(t) 
is expressed by (3.1) and 

a(t)=~al, O~t<tl 
l a2, tl<~t<tl+t2='g 

where a, >_ 0,a2 ~> 0 are constants, and g221 : 4to2 _a21 >0,~22 2 z = 4(0 2 - a  2 > 0. The monodromy matrix 
for this case is obtained in the form of the product of corresponding elementary matrices of the phase 
flux (see Section 2): A = ~(D)G~G~. 

We use Theorem 1 for the case D < 1. Multiplying the matrices, we obtain the parametric-resonance 
condition 

I x+ ~l+ -x_xl_ l> 2chI °qtl 2a2t21 

:I:'Q2 )2 -(a~ +°~ )2 TI± = cos(~t~ +~2h)  4(Q, i 
~ ¢ : 1 :  " "  ' 8QIQ2 
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We will assume that the coefficients a i and a2 are so small that ×_+ > 0. It is then obvious that the 
maximum of the modulus of the left-hand side of the criterion is reached when 11 +~_ = -1 and is equal 
to ×+ + ×_. A sufficient condition for parametric resonance to be possible in the system will be 

x+ + ×_ > 2 chl aiti ; a2t2 ] (3.3) 

In particular, if ~1+ = 1 and ~q_ = -1,  we have 

f l i t  l = ~ + g ( l + k ) ,  f l 2 t z = - - - + ~ t ( l - k  ), l, k = O ,  +1, +2, . . .  

Therefore  

air l+a2t 2 =] I Ia l  _ a2 '~¢~+T~'~+fal +a2"~ll 
2 2Lt l, el2) ' - - t 2  ) tl% a )j 

Depending on the dissipation, condition (3.3) thereby limits the range of values of the natural numbers 
I and k which specify the relation between the durations of the sections in which the coefficients of 
differential equation (1.1) are constant. 

System 5. Suppose the equation of motion has the same for m as for System 4, but for each interval 
in which the coefficients are constant the condition a~ = 4t~],j = 1; 2 holds. The condition for parametric 
resonance is equivalent to the inequality 

(a i - a2) z > 2.[1 + ch(x t + x2) ] 

ai a 2 "CI~ 2 

where zl = altl /2,  z2 = a2t2/2. For fixed values of xl > 0, x2 > 0 this inequality has a solution for which 
parametric resonance will occur, despite the dissipative nature of the forces acting on the system. 

System 6. Suppose the dissipation is so large that a 2 = 4(02. The trace of matrixA is expressed by the 
formula 

ix A = YJY2 + zlz2 - x(y! - z t)(Yz - z2) 

where 

X =  

0 < Yl = exp(txl-tl) < zl = exp(tx~'tl) < 1 

0 < Y2 = exp(tX2ta) < Za = exp(tX~ta) < l 

If the times t 1 and t 2 are specified, we have 

ot~-=lnyl ,  o t ~ = l n z l ,  ~ = l n y 2 ,  ¢t~=lnz2 
t I t I t 2 t 2 

tr A = zzz2 + YlY2 - (ta In z I - t I In z 2) (t 2 In Yz - tl In Y2) (Yl - Zl ) (Y2 - z2) 
(In zz - in Yz )(In z2 - In Y2) 

The quadratic form with respect to times tz and t 2 in the numerator  of the fraction can be made as large 
in absolute value as desired and, consequently, the conditions for parametric resonance can always be 
satisfied in this case. 
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System 7. We will use the results of the analysis of System 1 and consider the resonance conditions 
for Hill's equation, in which 

(o(t) = {(1 + ¢)to, O<~t<xl2 
(1-e)ta,  ( x l 2 ) < - t < x ,  e < l  

where x = 2n/v. We have Meissner's equation [2]. This equation was considered in [1, 3] in order to 
illustrate the asymptotic estimates of the resonance regions for small values of e. We will indicate the 
resonance regions without assuming that e is small. A less complete result was obtained previously in 
[2, 6]. In the notation of System 1 we will have 

t.o I = (1 + e ) t o ,  CO 2 = (1 - E)(O, t 1 = t 2 2 

2 2e 2 tax(l + e) 

"+ = 2 ' 
17 2 _ ~ m  

(o'¢(1 - e )  

Since D = 1, we obtain two cases of parametric resonance. 
Case 1: e 2 sin2(ze)/> sin2z. 
Case 2: e 2 cos2(ze) t> cosZz, Z = cox~2 = 7rxo/v. 
In Fig. 2 we show the regions of the resonance relations of the parameters. The regions that are showed 

hatched from left to right downwards correspond to Case 1, while the regions that are shown hatched 
from left to right upwards correspond to Case 2. The quantities Yi, zi (i = 1, 2 . . . .  ) are the successive 
roots of the equations ~ = ctg ~ ,  rLz = - tg  ~ ,  respectively. These roots give the arguments of the 
maxima for the functions fl(e)  = e 2 sin 2 Ze, f2(e) = e 2 cos 2 Ze for a fixed ratio (a/v. For example, the 
values of the argument e for which the functionfl(e) reaches a maximum are expressed in the formula 
ei = ziv/ta. T h e  arguments of  the maxima for the functionf2(e) are calculated in exactly the same way. 
The dashed curves correspond to these arguments of the maxima. The zeros of the functionsfl(e) and 
f2(e) are calculated in the same way. The graphs of the corresponding inversely proportional relations 
are represented by the continuous thin curves. At the boundary of the hatched regions, parametric 
resonance will also occur, with the exception of points for which sin 2Z = 0, sin 2Ze = 0 simultaneously. 
The values (o/v = n/2, e = k/n correspond to these points, where k and n are integers. The points in 
Fig. 2 which generate resonance regions when e = 0, correspond to the points 11+ = _1, 11_ = 0 in 
Fig. 1. This supplements the well-known pattern of resonance regions in this case [6]. Note also that, 
unlike the results obtained in [2], the boundaries of the regions of parametric resonance do not contain 
self-intersections. 

System 8. Consider the oscillations of a pendulum of variable length l(t) in a parallel gravity field. 
We will write its equation of motion in the form 

~+ ~-~J ~o+ gsin q) = 0 

! 

8 

I/2 

0 I /Z  I X/Z Z ~r/Z ~/~, 

Fig. 2. 
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We have a(t )  = 2J/l, D = 1, irrespective of the form of the function l(t).  We will assume that the length 
of the pendulum varies periodically as given by 

{~2 0 ~ t < t t  
l ( t )= ', t l < ~ t < t l + t 2 ,  X = t l + t  2 

When t varies inside the limits in which the function l(t) is constant, the equation of the oscillations of 
a mathematical pendulum will hold, which, for small oscillations, can be represented approximately in 
the form of  Hill's equation with a function ~0(t) of the form (3.1), where oh = 4(g/ll) ,  oJ2 = 4(g/12). 

All this recalls the formulation of the problem for System 1 considered above. The difference is that 
at the instants when there is an abrupt (very rapid) cha.nge in the length of the pendulum we cannot 
neglect the term containing the product of the velocities l(0 in its equation 6f motion. In Hill's equation, 
when there was a sudden change in the function c0 the coordinate and velocity remained continuous. 
In the example considered, the coordinate q~ will be continuous at the instant of reversal, while the 
velocity ~0, by the theorem on the kinetic moment  about the point of suspension, changes abruptly 
together with a change in the length of the pendulum 

-, x=t /l  

where ++ is the value of the angular velocity after the sudden change in the length of the pendulum, 
while ~b- is the change in the angular velocity before the change. When the length changes from 12 to 
11, the corresponding coefficient for recalculating the angular velocity changes its sign. 

We can now use the parametric resonance criterion, taking '171 = 0~ltt, x~ = 0~2t z. We will write the 
components of the monodromy matrix as 

all = COS X I COS "C 2 --~,2f.1)1(.021 sin X l sin '1; 2 

a21 = --~,-20~ 2 c o s  "C I sin x 2 - co I sin xl cos x 2 

al2 = 0~ -l sin x I cos x 2 + k 2 ~ t  cosx I sin x 2 

a~  = -~,-2t010~2 sin x t sin x 2 + cosx~ cosx 2 

Note that in the formulae for a2t and a22 there is f a c t o r  ~,-2, which is due to the fact that the period of 
the function l( t)  is completed when it takes the value which it had at the beginning of the period. 

According to Theorem 1 the resonance condition Jail + a22 ] > 2 takes the form (3.2), where ×+ - 
(t.01~, __. ~2~,-1)2/(2(o10)2). It is obvious that for any positive values of It and 12 we have ×+/> 2, ×_ I> O. 
The equalities ×+ = 2, ×_ = 0 occur if and only if ll = 12. 

In the case of multiple multipliers, the conclusions obtained for System 1 remain the same. Finally, 
we again have the resonance regions shown in Fig. 1. 
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